

Frequenzumrichter 3G3M1

Kurzanleitung

HINWEIS

Alle Rechte vorbehalten. Diese Publikation darf ohne vorherige schriftliche Genehmigung von OMRON weder als Ganzes noch in Auszügen in irgendeiner Form oder auf irgendeine Weise, sei es auf mechanischem oder elektronischem Wege oder durch Fotokopieren oder Aufzeichnen, reproduziert, auf einem Datensystem gespeichert oder übertragen werden.

Da OMRON weiterhin an einer ständigen Verbesserung seiner Qualitätsprodukte arbeitet, sind Änderungen an den in diesem Handbuch enthaltenen Informationen ohne Ankündigung vorbehalten. Dieses Handbuch wurde äußerst sorgfältig vorbereitet. Dennoch übernimmt OMRON keine Verantwortung für Fehler oder Auslassungen. Dies gilt insbesondere für die zu beachtenden Sicherheitshinweise. Diese lesen Sie bitte in der aktuellen Betriebsanleitung nach. Es wird keine Haftung für Schäden übernommen, die aus der Nutzung von in diesem Dokument enthaltenen Informationen zurückzuführen sind.

Inhaltsverzeichnis

1	Re	evisionshistorie					
2	Pr	roduktübersicht					
	2.1	Туре	nbezeichnung	6			
	2.2	Spez	fikation	6			
3	El	ektrisc	he Installation	7			
	3.1	Stand	dard-Version	7			
	3.2	Ethe	rCAT-Version	8			
	3.3	Haup	tstromkreis	9			
	3.4	Steu	erkreis	10			
	3.5	Ansc	hluss an externe Signalquelle/SPS	12			
	3.6	EMV	-Richtlinie	12			
4	Be	edienu	ng	13			
	4.1	Bedie	enteil - Tasten und Funktionen	13			
	4.	1.1	Standard-Version	13			
	4.	1.2	EtherCAT-Version	15			
	4.2	Digit	ale Zeichenzuordnungstabelle	17			
	4.3	Bedie	enstruktur	18			
5	Pa	aramet	rierung	19			
	5.1	Initia	lisierung	19			
	5.2	Grun	deinstellungen	20			
	5.3	Testl	auf	22			
	5.4	Auto	-Tuning	23			
	5.	4.1	Parametereinstellungen für Asynchron Motoren (ASM)	23			
	5.	4.2	Parametereinstellungen für Permanentmagnet Motoren	24			
	5.	4.3	Tuning-Fehlermeldungen	25			
	5.5	Siche	rheitsfunktion Safe Torque Off (STO)	28			
	5.	5.1	Anschluss über digitale Sicherheitseingänge	28			
	5.	5.2	FSoE (Fail Safe over EtherCAT)	29			
	5.6	Festf	requenzen	30			
	5.	6.1	Binäre Aktivierung	30			
	5.	6.2	Bitweise Aktivierung	30			
	5.7	Wich	tige Digitale Ein- und Ausgänge	31			
	5.	7.1	Digitale Eingänge	31			
	5.	7.2	Digitale Ausgänge	32			
	5.8	Betri	ebsart U/f	33			
	5.	8.1	Feste U/f-Kennlinie mit konstantem Drehmoment und quadratischem Drehmoment	33			
	5.9	Moto	prschutz	34			
	5.	9.1	Elektrothermische Motorschutzfunktion	34			

	5.	9.2 N	Notor PTC (Thermistor)	34
	5.	9.3 Tł	hermokontakt	34
	5.10	Bremsw	viderstand	35
6	Et	herCAT P	PDO-Mapping	36
7	Рс	ositionier	funktion	37
	7.1	Grundle	egender Ablauf	37
	7.2	Grundle	egende Parametrierung zur Nutzung der Positionierfunktion	38
	7.3	Vorgabe	e Positionssollwert	38
	7.4	Parame	eter zur Konfiguration der Encoder Eingänge	39
	7.5	Wesent	tliche digitale Eingangsfunktionen für die Positionierfunktion	39
	7.6	Wesent	tliche digitale Ausgangsfunktionen für die Positionierfunktion	39
8	Fe	ehlerumge	ebung	40
	8.1	Definitio	on	40
	8.2	Fehlerli	iste	41
	8.3	Verfahr	ren zum Quittieren des Fehlers	43

1 Revisionshistorie

Die Revisionshistorie des vorliegenden Dokuments befindet sich unten rechts auf jeder Seite.

KA-3G3M1-DE-02

Revisionscode

Revisionscode	Revisionsdatum	Beschreibung
01	Juni 2023	Erste Version
02	Dezember 2023	 Fehlerkorrekturen Anpassung bzw. Erweiterung um Kapitel: Kapitel 0 *1 Auswahl einzelner Ziffern: Grundsätzlich kann der Wert eines Parameters durch Drücken der Aufwärts- bzw. Abwärts-Taste in der kleinsten Digitalstelle erhöht bzw. verringert werden. Bei längerem Halten der Taste erhöht/verringert sich der Wert in immer größer werdenden Schritten. Wird die PRG/RESET-Taste bei der Einstellung eines Parameters lange gedrückt (ca. 2 Sekunden), fängt die linke Digitalstelle an zu blinken. Wird die Taste erneut gedrückt gehalten, wechselt die Blinkende Digitalstelle eine Digitalstelle weiter nach rechts. Nun kann in der jeweils blinkenden Digitalstelle der Wert des Parameters durch die Aufwärts- bzw. Abwärts-Taste erhöht bzw. verringert werden.
		 EtherCAT-Version Kapitel 5.3 Testlauf Kapitel 5.5.2 FSoE Kapitel 5.7 Wichtige Digitale Ein- und Ausgänge Kapitel 5.8 Betriebsart U/f Kapitel 5.9 Motorschutz Kapitel 5.10 Bremswiderstand Kapitel 6 EtherCAT Kapitel 7 Positionier

2 Produktübersicht

Abbildung 2-2: Typenzeichnung EtherCAT-Version

2.2 Spezifikation

Die technische Spezifikation, Angaben zu den Abmessungen der einzelnen Baugrößen und Hinweise zur mechanischen Installation entnehmen Sie bitte dem aktuellen technischen Datenblatt. Dieses finden Sie unter dem folgenden Link:

3 Elektrische Installation

Bitte schließen Sie den Frequenzumrichter 3G3M1 gemäß der folgenden Anschlussbelegung an.

3.1 Standard-Version

Abbildung 3-1: Anschlussbelegung Standard-Version

3.2 EtherCAT-Version

Abbildung 3-2: Anschlussbelegung EtherCAT-Version

Klemme	Name	Funktion
L1/R, L2/S, L3/T	Eingang Spannungsversorgung (2001	Wird zum Anschließen einer
	bis 2185 und 4004 bis 4220)	Spannungsversorgung verwendet
L1/L, L2/N	Eingang Spannungsversorgung (B002	Wird zum Anschließen einer
	bis B037)	Spannungsversorgung verwendet
U, V, W	Ausgang Frequenzumrichter	Wird zum Anschließen eines Motors
		verwendet
P(+), DB	Anschluss Bremswiderstand	Zum Anschließen eines optionalen
		Bremswiderstands
P1/P(+)	Anschluss Zwischenkreisdrossel	Entfernen Sie die Kurzschlussbrücke zwischen
		den Klemmen P1 und P(+), und schließen Sie
		eine optionale Zwischenkreisdrossel an.
P(+)/N(-)	Anschluss regenerative Bremseinheit	Schließen Sie optionale regenerative
		Bremseinheiten an, wenn ein
		Bremsmoment erforderlich ist und die
		Leistung der integrierten Bremseinheit nicht
		ausreichend ist.
R0/T0	Steuerspannung Hilfseingang	Um ein Alarmsignal beizubehalten, während
(Nur 3G3M1		eine Schutzfunktion aktiviert und die
-A2185/		Hauptspannungsversorgung des
-A4185/		Frequenzumrichters abgeschaltet wurde oder
-A4220)-		zur Anzeige der digitalen Bedieneinheit bei
		abgeschalteter Hauptspannungsversorgung.
		Schließen Sie eine Spannungsversorgung an
		diese Klemmen an.
G	200 V: Erdung Klasse D (Erdung nach	Zur Erdung des Frequenzumrichters
	100 Ω oder kleiner)	
	400 V: Erdung Klasse C (Erdung nach	
	10 Ω oder kleiner)	

3.3 Hauptstromkreis

3.4 Steuerkreis

Туре	Klemme	Name	Funktion (Signalpegel)
	DI1	Multifunktionseingang 1	Spannungspegel zwischen Eingang und DIC:
		(Binäre Festfrequenzauswahl 1. Bit) *3	Min. 20 V = logisch EIN
	DI2	Multifunktionseingang 2	Max. 2V = logisch AUS
		(Binäre Festfrequenzauswahl 2. Bit) *3	Maximale Eingangsspannung 27 VDC
	DI3	Multifunktionseingang 3	Laststrom (DI1/DI2) 2,5 bis 16 mA (bei 27
e G		(Binäre Festfrequenzauswahl 3. Bit) *3	VDC)
äng	DI4	Multifunktionseingang 4	Laststrom (DI3 bis DI7) 2,5 bis 5 mA (bei 27
ing		(Free-Run Stop) ^{*3}	VDC)
ale	DI5	Multifunktionseingang 5	Interner Widerstand 5,5 kΩ
igit		(Fehler-Reset) ^{*3}	
Δ	DI6	Multifunktionseingang 6	
		(AN: Vorwärtslauf, Aus: Stopp) *3*4	
	DI7	Multifunktionseingang 7	
		(AN: Rückwärtslauf, Aus: Stopp) *3*4	
	DIC ^{*1}	0V Potentialanschluss	Maximaler Ausgangsstrom 100 mA
	+24V	Spannungsversorgung +24 VDC	
	SF1/SF2 ^{*2}	Sicherer Eingang 1	Spannungspegel zwischen Eingang und DIC:
9 8			Min. 20 V = logisch EIN
Jer äng		Sicherer Fingang 2	Max. 2 V = logisch AUS
Sicl			Maximale Eingangsspannung 27 VDC
- ш			Laststrom 2,5 bis 5 mA (bei 27 VDC)
			Interner Widerstand 6,6 kΩ

*1 Schließen Sie den Stromkreis zwischen den Klemmen +24V und DIC nicht kurz. Andernfalls kann das Gerät beschädigt werden.

*2 Stellen Sie die DIP-Schalter SW9.1/9.2 auf AUS, um diese Funktion zu aktivieren.

*3 Werkseinstellung

*4 Die Funktion Vorwärtslauf und Rückwärtslauf kann nur den Eingängen DI6/DI7 zugewiesen werden

Туре	Klemme	Name	Funktion (Signalpegel)
	+10V	Spannungsversorgung für Anschluss Al1	Maximaler Ausgangsstrom 10 mA
gänge	Al1	Analog-Spannungseingang 1 (-10 bis 10V)	Eingangsimpedanz: 22 kΩ Maximale Eingangsspannung -15 bis 10 VDC
og-Eing	AI2 ^{*1}	Analog-Stromeingang 1 (4 bis 20mA)	Eingangsimpedanz 250 Ω Maximaler Eingangsstrom 30 mA
Analo		Analog-Spannungseingang 1 (0 bis 10V)	Eingangsimpedanz 22 kΩ Maximale Eingangsspannung -15 bis 10 VDC
	AIC	Bezugspotential für Analogeingänge	0 V
	PTC	Externen Thermistor-Eingang	Thermistor-Typ PTC
1. BO	AO ^{*2}	Multifunktions-Spannungsausgang (AOV)	Eingangsimpedanz ca. 5 kΩ
alog gan		Multifunktions-Stromausgang (AOI)	Eingangsimpedanz ca. 500 Ω
Ana Aus		Multifunktions-Pulsausgang (PO)	Maximal Ausgangs-Pulsfrequenz 32 kHz Maximale Ausgangs-Spannung 11 VDC Maximaler Ausgangs-Strom 2 mA
isgang Dr	DOC	Bezugspotential für Multifunktionsausgänge DO1 und DO2	Maximal zulässiger Strom 100 mA
ttions-Au Collecto	DO1	Multifunktionsausgang 1 (Während Betrieb) *3	Open-Collector-Ausgang zwischen Terminal und DOC Maximal zulässige Spannung 48 VDC
Multifunk Open	DO2 ^{*4}	Multifunktionsausgang 2 (Thermische-Überlast-Warnung) *3	Maximal zulässiger Strom je Ausgang 50 mA Maximaler Spannungsabfall beim Einschalten 4 VDC
ions 8	ROA	Multifunktions-Relaisausgang A (Alarm Ausgang, NO-Kontakt) *3	Maximal zulässige Spannung/-Strom AC 230 V/0,3 A/Cos phi 0,3
tifunkt Vusgan	ROB	Multifunktions-Relaisausgang B (Alarm Ausgang, NC-Kontakt) *3	Maximal zulässige Spannung/-Strom DC 48 V/0,5 A
Mult 4-	ROC	Bezugspotenzial für Relaisausgänge ROA und ROB	
erne sversorgung	P24 ^{*6}	Externe 24V Eingang Spannungsversorgung	Einspeisung einer externen 24V- Spannungsversorgung zur Aufrechterhaltung der EtherCAT- Kommunikation bei Netzausfall.
Ext Spannung	0 ^{*6}	Externe 24 V Spannungsversorgung Masse	
	RS485+	RS485-Differentialsignal (+)	MEMOBUS Kommunikationsprotokoll
Modbus	RS485-	RS485-Differentialsignal (-)	Maximale Kommunikationsgeschwindigkeit 115,2 kbps Maximale Kabellänge 500 m Eingebauter Abschlusswiderstand 110 Ω ^{*5}

*1 Umschaltung Strom-/Spannungseingang über DIP-Schalter SW

*2 Umschaltung Spannungs-/Strom-/Pulsausgang über DIP-Schalter SW5

*3 Werkseinstellung

*4 Nur M1-STD, bei M1-ECT nicht vorhanden

*5 Aktivierung des Abschlusswiderstandes über DIP-Schalter SW6 auf EIN

*6 Nur M1-ECT, bei M1-STD nicht vorhanden

3.5 Anschluss an externe Signalquelle/SPS

Die Eingänge sind werkseitig in NPN-Logik konfiguriert und werden über die interne 24 VDC-Spannungsversorgung versorgt. Für den Anschluss an eine SPS oder externe Signalquelle stellen Sie den **DIP-Schalter SW1** auf **SOURCE** (PNP-Logik) und verbinden Sie das Bezugspotential (0 V) der externen Spannungs-/Signalquelle mit der Klemme *DIC*.

3.6 EMV-Richtlinie

Der Frequenzumrichter der Serie 3G3M1 erfüllt, unter Beachtung der Nachfolgenden Installationsempfehlungen, die Anforderungen der EN61800-3:

Abbildung 3-5: Anschlussbeispiel 1-Phasige 200V-Klasse

- Verwenden Sie einen externen EMV-Filter (passende EMV-Filter sind im Datenblatt aufgeführt)
- Führen Sie Erdungsanschlüsse so kurz wie möglich aus
- Montieren Sie Frequenzumrichter und EMV-Filter auf derselben Erdungsplatte
- Verwenden Sie eine geschirmte Leitung zwischen Motor und Frequenzumrichter und führen Sie diese so kurz wie möglich aus (maximal 20 m für Filterklasse C1).

4 Bedienung

4.1 Bedienteil - Tasten und Funktionen

4.1.1 Standard-Version

Abbildung 4-1: Bedienteil Standard

Kürzel	Symbol	Name	Funktion
A		USB-Anschluss	Benutzen Sie ein USB 2.0, Typ A - Micro-B Kabel, um das Bedienteil mit dem PC und Sysmac Studio zu verbinden.
В	8.8.8.8.	Datendisplay	Zeigt Parameter, Fehler und weitere Daten an.
С	PRG RESET	Programm-/Reset- Taste	Während Betriebs-Modus: Ändert den Modus in den Programm-Modus Während Programmier-Modus: - Einmaliges drücken ändert den Modus in den Betriebs-Modus - Taste gedrückt halten, um bei der Eingabe zwischen den einzelnen Ziffern zu wechseln ^{*1} Während eines Alarms/Fehlers: Setzt den Fehler nach beseitigen der Ursache zurück
	RUN	Start-Befehl-LED	Leuchtet (grün), wenn der Start-Befehl auf Digital Bedienkonsole eingestellt ist. Blinkt (grün), wenn die RUN-Taste durch den Bediener betätigt wurde.
D		Start-Taste	Startet den Frequenzumrichter. <i>HINWEIS:</i> Beachten Sie, dass diese Taste nur aktiviert ist, wenn der Start-Befehl auf Bedienterminal (F02 = 0, 2 oder 3) eingestellt ist.
E	«	Aufwärts-Taste	Erhöht die Parameter Nummer oder den aktuellen Datenwert und wird zur Navigation im Menü verwendet.
F	STOP	STOP-Taste	Stoppt den Frequenzumrichter (Verzögerung bis Stopp)
G	\blacktriangleright	Abwärts-Taste	Verringert die Parameter Nummer oder den aktuellen Datenwert und wird zur Navigation im Menü verwendet.
Н		Enter-Taste	Während dem Betrieb:Schaltet die Monitorelemente (Ausgangsfrequenz, Ausgangsstrom, Ausgangsspannung, usw.) für den Betriebsstatus um.Während Programmier-Modus: Bestätigt die im Display angezeigten Daten Während eines Alarms/Fehlers: wechselt die Anzeige zur Alarm Information.

Kürzel	Symbol	Name	Funktion
	RUN	RUN-LED	 Leuchtet (grün): wenn ein START-Signal und ein Frequenzsollwert (ungleich 0) anliegen. während der Verzögerung, wenn kein START- Signal anliegt. AUS: wenn kein START-Signal anliegt wenn ein START-Signal anliegt und OHz- Frequenzsollwert anliegt. (Ausnahme: OHz- Regelung)
I	PR G	Program-LED	Leuchtet (grün), wenn bearbeitbare Parameter auf dem der Datendisplay angezeigt werden.
	Hz ■	LED-Frequenzanzeige	Leuchtet (grün), wenn ein Frequenzwert auf dem Datendisplay angezeigt wird.
		LED-Fehleranzeige	Leuchtet (rot), wenn der Frequenzumrichter im Fehlerzustand ist.
	A	LED-Stromanzeige	Leuchtet (grün), wenn ein aktueller Wert auf dem Datendisplay angezeigt wird.
	×10	LED-Faktoranzeige	Die LED-Faktoranzeige leuchtet (grün), wenn die angezeigten Daten den Wert 9999 überschreiten. Der aktuell angezeigte Wert muss mit dem Faktor 10 multipliziert werden.

*1 Auswahl einzelner Ziffern: Grundsätzlich kann der Wert eines Parameters durch Drücken der *Aufwärts-* bzw. *Abwärts-Taste* in der kleinsten Digitalstelle erhöht bzw. verringert werden. Bei längerem Halten der Taste erhöht/verringert sich der Wert in immer größer werdenden Schritten.

Wird die *PRG/RESET-Taste* bei der Einstellung eines Parameters lange gedrückt (ca. 2 Sekunden), fängt die linke Digitalstelle an zu blinken. Wird die Taste erneut gedrückt gehalten, wechselt die Blinkende Digitalstelle eine Digitalstelle weiter nach rechts. Nun kann in der jeweils blinkenden Digitalstelle der Wert des Parameters durch die *Aufwärts-* bzw. *Abwärts-Taste* erhöht bzw. verringert werden.

4.1.2 EtherCAT-Version

Abbildung 4-2: Bedienteil EtherCAT

Abbildung 4-3: LED-Status und -Timing

	Kürzel	Name	Farbe	Status	Funktion
	PWR	Stouerspennungsversorgung	Grün	AUS	Steuerspannungsversorgung ausgeschaltet
		Steuerspannungsversorgung	Grun	EIN	Steuerspannungsversorgung eingeschaltet
		FSoE Kommunikationsstatus		EIN	FSoE-Slave-Verbindung hergestellt
	FS		Grün	Flashing	FSoE-Slave-Verbindung wird hergestellt
			Rot	Flashing	Safety-Parameter-Fehler, Safety Kommunikationszeitüberschreitung
Status LEDs Umrichter				AUS	STO über FSoE ist deaktiviert, die Spannungsversorgung ist ausgeschaltet oder ein schwerwiegender Fehler, einschließlich Fehler bei der Selbstdiagnose, ist aufgetreten
	RUN	Imrichter Betriebsstatus		AUS	Umrichter gestoppt
		Simenter Betriebsstatus	0.0	EIN	Umrichter gestartet
	PRG	PDO-Manning Fehlerstatus	Grün	AUS	Kein Fehler
	110		Gruii	Flashing	PDO-Mapping Fehler
				AUS	Kein Fehler
	ERR	Umrichter Fehler	Rot	AN	Fehler
				Flashing	Warnung

	Kürzel	Name	Farbe	Status	Funktion
		Eingangsverbindungsstatus		AUS	Verbindung nicht hergestellt
	L/A		Grün	AN	Verbindung hergestellt
	IN	des EtherCAT Physical Layer	Gruii	Elickoring	Im Betrieb, nach Herstellung der
				Flickering	Verbindung
				AUS	Verbindung nicht hergestellt
	L/A	Ausgangsverbindungsstatus	Grün	AN	Verbindung hergestellt
	OUT	des EtherCAT Physical Layer	Grun	Elickoring	Im Betrieb, nach Herstellung der
				Flickering	Verbindung
		EtherCAT Status	Grün		Init-Status oder
				AUS	Spannungsversorgung ist
Status	DUN				ausgeschaltet
LEDs	KUN			Blinking	Pre-Operational-Status
EtherCAT				Single flash	Safe-Operational-Status
				AN	Operational-Status
				AUS	Kein Fehler
		[thore 4]		Blinking	Kommunikationseinstellungsfehler
				Single flach	Synchronisations- oder
				Single hash	Kommunikationseinstellungsfehler
	ERR	Kommunikationsfehler	Rot	Double	Application WDT timeout Fehler
		Kommunikationstenier		flash	
				Flickering	Boot Fehler
				AN	Schwerwiegender Fehler (wie z. B.: WDT timeout)

Zeichen	LED-Display	Zeichen	LED-Display	Zeichen	LED-Display	Zeichen	LED-Display
0	0	9	9	I	1	R	r
1		А	8	J	J	S	5
2	5	В	Ь	К	F	Т	ſ
3	3	С	[L	L	U	U
4	Ч	D	ď	М	<u>יי הין או</u>	V	U
5	5	E	5	N	п	W	<i>៤៤ *</i> រ
6	6	F	F	0	0	х	-
7]	G	6	Р	P	Y	У
8	8	Н	H	Q	9	Z	-

4.2 Digitale Zeichenzuordnungstabelle

*1

Wird zweistellig dargestellt.

4.3 Bedienstruktur

Die Bedienstruktur unterteilt sich im Wesentlichen in sechs Bereiche:

18bis 19	Parameter Anpassung
2788	Anzeige der geänderten Parameter
3088	Betriebsstatus Anzeige
V 1. (. 0	E/A-Prüfung
5.C X E	Wartungsinformationen
8.81	Alarm Informationen

Über Reser kann die Struktur aufgerufen werden und über Mund kann die Struktur umgeschaltet werden.

5 Parametrierung

5.1 Initialisierung

Eine Initialisierung der Parameter ist nur im **STOP-Zustand** des Frequenzumrichters möglich. Geben Sie keinen **START-Befehl** während der Initialisierung, da andernfalls der Frequenzumrichter nach Abschluss der Initialisierung anlaufen kann.

Um eine Initialisierung durchzuführen, muss der Parameter H03 ≠ 0 eingestellt werden.

Wechseln Sie in die Parameter-Gruppe U - und dort über auf Parameter H03.

Der Wert des Parameters kann nur durch gleichzeitiges Drücken von 🔤 und 🗖 oder 🔤 und 🖉 geändert

werden. Durch Bestätigung der Einstellung über \checkmark wird die Initialisierung gestartet. Der erfolgreiche Abschluss der Initialisierung wird durch \underline{SRUE} signalisiert.

Nr.	Name	Beschreibung	Werkseinstellung (Bereich)
H03	Parameter	0: deaktiviert	0
	Initialisierung	1: Initialisierung aller Parameter	(0 - 8)
		2: Initialisierung Parameter Motor 1	
		3: Initialisierung Parameter Motor 2	
		4: Initialisierung der Benutzerdefinierten Parameter	
		5: Initialisierung aller Parameter (außer E/A- und	
		Kommunikationsparameter)	
		6: Reserviert	
		7: Löschen der Alarmhistorie	
		8: Löschen der Favoritenauswahl	

5.2 Grundeinstellungen

Nr.	Name	Beschreibung	Werkseinstellung (Bereich)
F01	Frequenzsollwert-	0: Bedienterminal	STD: 0
	quelle	1: Analog Spannungseingang Al1	ECT: 15
		2: Analog Stromeingang AI2 (AII)	
		3: Analog Spannungseingang Al1 +	(1 – 15)
		Analogstromeingang AI2 (AII)	
		5: Analog Spannungseingang AI2 (AIV)	
		7: Digitale Ansteuerung	
		(DI1 bis DI7, 17:UP bzw. 18:DWN zum erhöhen	
		bzw. reduzieren des Frequenzsollwertes)	
		8: Digitale Bedienkonsole	
		10: Pattern Operation	
		12: Impuistoigeeingang	
		13: Berechnungsergebnis	
		14. RS-485 KOMMUNIKALION	
502	Starthofoblcqualla	15. Feldbus (Ilul ECI-Vallance)	STD: 2
FUZ	Startbereinsqueile	Anschlusskiemmblock)	51D. Z
		1: Externes Signal (Digitaler Eingang)	LC1. 15
		2: Bedienterminal (Vorwärts)	(1 – 5)
		3: Bedienterminal (Rückwärts)	(1 3)
		4. BS-485 Kommunikation	
		5: Feldbus (nur ECT-Variante)	
F03	Maximale		60,0
	Ausgangsfrequenz		(5,0 – 590,0)
F04	Nennfrequenz Motor		50,0
			(5,0 – 590,0)
F07	Beschleunigungszeit		6,0 s
500	1		(0,00 - 6000,00)
F08	Verzogerungszeit 1		6,0 s (0.00 – 6000.00)
F15	Obere		(0,00 - 590,00)
	Frequenzgrenze		(-,,
F26	Taktfrequenz	0: 0.75 kHz	2
		1: 1 kHz	(0 – 16)
		2: 2 kHz	
		3: 3 kHz	
		4: 4 kHz	
		5: 5 kHz	
		6: 6 kHz	
		7: 7 kHz	
		8: 8 kHz	
		9: 9 kHz	
		10: 10 kHz	
		11:11 KHz	
		12: 12 kHz	
		13: 13 KHZ	
		14: 14 KHZ	
		15: 15 KHZ	
		TO: TO KHZ	

16: 16 KHZ
 *1 aktuell eingestellter Frequenzwert wird gespeichert, wenn dieser durch z. B.: eine Festfrequenz überschrieben wird. Er wird wieder geladen, wenn die Festfrequenz zurückgesetzt wird.

Nr.	Name	Beschreibung	Werkseinstellung (Bereich)
F42	Betriebsart	0: IM U/F-Regelung	0
		1: IM dynamische Drehmoment- Vektorregelung	(0 – 16)
		3: IM U/F-Regelung mit	
		Geschwindigkeitsrückführung	
		4: IM dynamische Drehmoment- Vektorregelung mit	
		Geschwindigkeitsrückführung	
		5: IM-Vektorregelung ohne	
		Geschwindigkeitsrückführung	
		6: IM-Vektorregelung mit	
		Geschwindigkeitsrückführung	
		15: PM-Vektorregelung ohne	
		Geschwindigkeitsrückführung	
		16: PM-Vektorregelung mit	
		Geschwindigkeitsrückführung	
P02	Motor Nennleistung		Modellabhängig
			(0,00 – 1000,00)
P03	Motor Nennstrom		Modellabhängig
			(0,00 – 500,00)
F05	Motor		Modellabhängig
	Nennspannung		200 / 400
			(80 – 240 / 160 -
			500)

5.3 Testlauf

Steuerung über das Bedienteil

- 1. Kontrollieren Sie den korrekten Anschluss der Leistungs- und Steuerungsklemmen.
- 2. Schalten Sie die Spannungsversorgung ein.
- 3. Setzen Sie die Frequenzsollwertquelle auf Bedienterminal (F01 = 0).
- 4. Setzen Sie die *Startbefehlsquelle* auf *Bedienterminal* (F02 = 0).
- 5. Programmieren Sie für die Applikation adäquate Rampen (F07, F08).
- 6. Setzen Sie den Sollwert in Parameter *C99* auf einen niedrigen Wert (10 Hz).
- 7. Kontrollieren Sie die aktuelle Ausgangsfrequenz in Parameter *W115*, hier sollte jetzt 0.00 angezeigt werden.
- 8. Drücken Sie die START Taste (*RUN*). Die RUN-LED leuchtet jetzt auf und der Motor sollte beginnen sich zu drehen.
- 9. Die Ausgangsfrequenz in *W115* sollte sich jetzt auf den eingestellten Sollwert (*C99*) ändern.
- 10. Kontrollieren Sie den aktuellen Ausgangsstrom in Parameter W05.
- 11. Wenn der Frequenzumrichter problemfrei läuft (Drehrichtung, Frequenz, Strom), können Sie jetzt die Sollfrequenz (*C99*) langsam erhöhen.
- 12. Stoppen Sie den Frequenzumrichter wieder durch Drücken der Stopp-Taste (STOP).

Steuerung über die Klemmleiste

- 1. Kontrollieren Sie den korrekten Anschluss der Leistungs- und Steuerungsklemmen.
- 2. Der Frequenzsollwert sollte an den Analog Spannungseingang Al1 angeschlossen sein.
- 3. Schalten Sie die Spannungsversorgung ein.
- 4. Setzen Sie die Frequenzsollwertquelle auf Analog Spannungseingang Al1 (F01 = 1).
- 5. Setzen Sie die Startbefehlsquelle auf Externes Signal (Digitaler Eingang) (F02 = 1).
- 6. Programmieren Sie für die Applikation adäquate Rampen (F07, F08).
- 7. Kontrollieren Sie in Parameter *C99* den aktuellen Sollwert, stellen Sie diesen über den Analogeingang Al1 auf einen niedrigen Wert (10 Hz).
- 8. Kontrollieren Sie die aktuelle Ausgangsfrequenz in Parameter *W115*, hier sollte jetzt 0.00 angezeigt werden.
- 9. Aktivieren Sie den START Eingang für die gewünschte Drehrichtung (Klemme *DI6* bzw. Klemme *DI7*). Die RUN-LED leuchtet jetzt auf und der Motor sollte beginnen sich zu drehen.
- 10. Die Ausgangsfrequenz in *W115* sollte sich jetzt auf den eingestellten Sollwert (*C99*) ändern.
- 11. Kontrollieren Sie den aktuellen Ausgangsstrom in Parameter W05.
- 12. Wenn der Frequenzumrichter problemfrei läuft (Drehrichtung, Frequenz, Strom), können Sie jetzt den Sollwert langsam erhöhen.
- 13. Stoppen Sie den Frequenzumrichter wieder durch Deaktivieren des START Einganges.

5.4 Auto-Tuning

Das Auto-Tuning verwendet Motoreigenschaften, um die Antriebsparameter für die Vektorregelung automatisch einzustellen. Berücksichtigen Sie dabei den Motortyp, die Ansteuerungsmethode und die Installationsumgebung des Motors und wählen Sie die passende Auto-Tuning Methode aus.

Das Auto-Tuning kann entweder durch manuelles Einstellen der Parameter am Gerät bzw. über Sysmac Studio oder durch den Tuning-Wizard in Sysmac Studio erfolgen. Der Tuning Wizard kann in Sysmac Studio über Rechtsklick auf das Gerät -> *Einrichtung und Tuning* gestartet werden.

Nachfolgende Parameter müssen vor dem Starten des Auto-Tunings entsprechend der Anwendung festgelegt werden.

Nr.	Name	Beschreibung	Werkseinstellung (Bereich)
P01	Pol-Zahl		4
			(2 - 128)
P02	Motor Nennleistung		Modellabhängig
			(0,00 - 1000,00)
P03	Motor Nennstrom		Modellabhängig
			(0,00 – 500,00)
F05	Motor		Modellabhängig
	Nennspannung		200 / 400
			(80 – 240 / 160 -
			500)
F42	Betriebsart	1: ASM dynamische Drehmoment Vektorregelung	0
		4: ASM dynamische Drehmoment Vektorregelung	(0 – 16)
		mit Rückführung	
		5: ASM-Vektorregelung	
		6: ASM-Vektorregelung mit Rückführung	

5.4.1 Parametereinstellungen für Asynchron Motoren (ASM)

Nr.	Name	Beschreibung	Werkseinstellung (Bereich)
P01	Pol-Zahl		4
			(2 - 128)
P02	Motor Nennleistung		Modellabhängig
			(0,00 – 1000,00)
P03	Motor Nennstrom		Modellabhängig
			(0,00 – 500,00)
P30	PM Motor Anlaufart	0: Pull-In by Current	1
		1: IPM Motor Type 1	(0 – 4)
		2: SPM Motor	
		3: Pull-In by Current for IPM Motor	
		4: IPM Motor Type 2	
P64	1st PM Motor Iron	Wenn unbekannt auf "0" einstellen	5,0
	Loss		(0,0 – 20,0)
P90	PM Motor	Wenn unbekannt gleich 2 x Nennstrom	Modellabhängig
	Überstromschutz		(0,00 – 500,00)
	Level		
F05	Motor		Modellabhängig
	Nennspannung		200 / 400
			(80 – 240 / 160 -
			500)
F42	Betriebsart	15: PM Vector control without speed and pole	0
		position sensor	(0 – 16)
		16: PM Vector control with speed and position	
		sensor	

5.4.2 Parametereinstellungen für Permanentmagnet Motoren

Auto-Tuning starten

- 1. Um das Auto-Tuning zu starten, wechseln Sie in den Parameter P04
- 2. Wählen Sie eine der folgenden Auto-Tuning Optionen aus

Methode	Parametrierung
Statisches Auto-Tuning (keine Rotation)	P04 = 1
Rotatorisches Auto-Tuning	P04 = 2
PM-Motor rotatorisches Auto-Tuning mit Pol-Positions-Offset Erkennung	P04 = 4
Statische Ermittlung des Wicklungswiderstandes	P04 = 5

3. Nach Aktivierung des in FO2 festgelegten Start-Befehls beginnt das Auto-Tuning

4. Nach erfolgreichem Tuning wird END im Display angezeigt

5.4.3 Tuning-Fehlermeldungen

Endet das Auto-Tuning in einem Fehler wird auf dem Display in der Standard-Version folgende Fehlermeldung angezeigt:

- STD-Version:Er7 im Troubleshooting von Sysmac Studio kann der Error Sub Code eingesehen
werden
- ECT-Version: 25 Hex nachfolgend wird der Error Sub Code angezeigt

Folgend finden Sie eine kurze Erläuterung der jeweiligen Error Sub Codes:

Fehlercode	Fehlercode	Kurzbeschreibung	Fehlerbeschreibung und			
7 8 9	0007 0008 0009	Sequenzabweichung	Wenn das START-Signal ausgeschaltet, STOP erzwungen oder Free-Run STOP aktiviert wird. → Deaktivieren Sie nicht das Start-Signal während dem			
6 10	0006 000A	Überstromfehler	Tuning Überstrom fließt während dem Tuning → Überprüfen Sie die mechanische Bremse (sofern vorhanden). → Prüfen Sie, dass der Motor mechanisch frei rotierbar ist.			
1 2 3 4	0001 0002 0003 0004	Abnormales Tuning Ergebnis	 Wenn eine Asymmetrie zwischen den Phasen erkannt oder ein Phasenverlust am Ausgang festgestellt wird. Dies führt dazu, dass das Tuning Ergebnis einen ungewöhnlich großen oder kleiner Wert ergeben hat. → Überprüfen Sie die Verdrahtung → Überprüfen Sie die Motorwicklungen 			
13	000D	Abnormale Tuning Frequenz (nur wenn P04=2)	 Wenn während des Tunings Begrenzungen erfolgen oder wenn eine Begrenzung bei der maximalen Ausgangsfrequenz oder der Frequenzgrenze festgelegt wurden (oberer Frequenzgrenzwert) → Passen Sie die Grenzwerte (z.B.: F03, F15) an, sodass diese mindestens 50% der Nennfrequenz (F04) entsprechen. 			
15	000F	Auftreten eines Fehlers	 Wenn eine Unterspannung oder ein genereller Fehler aufgetreten ist. → detaillierte Maßnahmen bei generellen Alarmen finden Sie in Kapitel 9-2 des Handbuches 			

Fehlercode STD	Fehlercode ECT	Kurzbeschreibung	Fehlerbeschreibung und Gegenmaßnahmen			
18 Nur wenn P04 = 2	0012 Nur wenn P04 = 2	Beschleunigungszeit überschritten	Wenn das 3-Fache des in F07 (Beschleunigungszeit) eingestellten Wertes überschritten wir, um eine Ausgangsfrequenz von 50% der Nennfrequenz zu erreichen → erhöhen Sie den Wert des Parameters F07			
21	0015	Fehler in der Kontrollmethode	Wenn P04=1: Statisches Auto-Tuning (keine Rotation) festgelegt wurde, der Motor jedoch durch die magnetische Polpositionserkennung (P30=1 oder 3) rotiert. Wenn P04=5: Statische Ermittlung des Wicklungswiderstandes festgelegt wurde und F042=15: PM-Motor Vektorregelung ohne Rückführung und ohne Pol-Positionssensor → stellen Sie die korrekte Parameterkombination ein			
5003	138B	Parametereinstellungsfehler	Wenn die Nennimpedanz oder - induktivität außerhalb des effektiven Bereiches liegt → Überprüfen Sie die Einstellungen in Parameter F04, F05 und P03			
5005	138D	Berechnung des Magnetpols nicht möglich	 P30=1 oder3: Wenn das Polverhältnis der Motorinduktivität klein ist P30=2: Wenn es keine magnetische Sättigungscharakteristik des Motors gibt → Wenn P30=1: ändern Sie P87 auf einen kleineren Wert. Beachten Sie jedoch, dass bei Motoren, die schwer magnetisch zu sättigen sind, ein Auto-Tuning nicht möglich sein kann → Wenn P30=2 oder 3, Stellen Sie P30=0 ein und erhöhen Sie F24 in Schritten von 0,5s bis auf einen Maximalwert von 5s 			
5056	13C0	Unzureichende magnetische Sättigung	 Wenn die magnetische Sättigungscharakteristik des Motors klein ist und die magnetische Polstellung nicht ermittelt werden kann → Erhöhen Sie den Wert von P87 stufenweise, wobei 120 % die Obergrenze ist. Wenn keine Wirkung erkennbar ist, stellen Sie P30 = 0 oder 3 ein und stellen Sie F24 = 0,5 bis 5,0 s. 			

Fehlercode STD	Fehlercode ECT	Kurzbeschreibung	Fehlerbeschreibung und Gegenmaßnahmen
5057	13C1	Übermäßige magnetische Sättigung	 Wenn die magnetische Sättigungscharakteristik des Motors hoch ist und während der Ermittlung der magnetischen Polstellung ein zu hoher Strom fließt. → Setzen Sie P87 auf einen niedrigen Wert
5059 - 5065	13C3 - 5065	Abnormales Tuning-Ergebnis	 Wenn eine Phasenungleichheit oder ein Phasenausfall erkannt wird, oder wenn ein offener Anschluss bzw. Kurzschluss ein ungewöhnlich hohes oder niedriges Tuning-Ergebnis zur Folge hat → Überprüfen Sie die Verdrahtung des Frequenzumrichters und Motors

5.5 Sicherheitsfunktion Safe Torque Off (STO)

Die Verwendung der Sicherheitsfunktion erfolgt in der Standard-Version über die digitalen Sicherheitseingänge. In der EtherCAT-Version ist es zusätzlich möglich, diese Funktion über FSoE (Fail Safe over EtherCAT) anzusteuern.

Die 3G3M1-Serie ist gemäß EN 61800-5-2:2016 zertifiziert und die STO-Funktion erreicht nach IEC/EN 61508-1/-2:2010 SIL3 sowie nach EN ISO 13849-1:2015, Cat.3 PLe.

Hinweis:

Für die Erreichung von SIL3/PLe ist keine EDM-Rückmeldung notwendig, sofern die Not-Halt Signale mittels Testpulsen überwacht werden (Querschlusserkennung).

5.5.1 Anschluss über digitale Sicherheitseingänge

Zur Aktivierung der Sicherheitsfunktion *Safe Torque Off* müssen die DIP-Schalter SW9.1 und SW9.2 auf *AUS* gestellt werden. Diese befinden sich unterhalb der Sicherheitsklemmen SF1/SF2. Das folgende Schaltbild zeigt den Anschluss der Sicherheitsfunktion mit einer externen Spannungsversorgung. Sollten Sie die interne Spannungsversorgung des Frequenzumrichters nutzen, finden Sie ein Anschlussbeispiel in Kapitel 3.1 bzw. Kapitel 3.2.

Abbildung 5-1: Anschluss mit externer Spannungsversorgung

Um ein EDM-Signal an eine Sicherheitssteuerung zurückgeben zu können, muss dem Ausgang DO1 in der Parametrierung der Wert 101: EDM (Safety Monitor) in Parameter E20 eingestellt werden.

5.5.2 FSoE (Fail Safe over EtherCAT)

Wird die Sicherheitsfunktion Safe Torque OFF (STO) über FSoE (Fail Safe over EtherCAT) verwendet, müssen die DIP-Schalter SW 9.1 und 9.2 nicht auf "AUS" gestellt werden. Diese müssen nur bei Verwendung der Digitalen Sicherheitseingänge deaktiviert werden. Zur Programmierung der Sicherheitsfunktion des Frequenzumrichters muss die Sysmac Studio Version 1.53 oder höher verwendet werden. Um die Sicherheitsfunktion über EtherCAT mittels FSoE nutzen zu können, muss im ersten Schritt im PDO-Mapping des Gerätes das 273th receive PDO mapping und das 273th transmit PDO mapping aktiviert werden.

PDO	-Zuordnungse	instellungen bearbeiten						_		×
PDO-Zuo	rdnung			PDO-Einträge	e enthalt	en in 512t	h transmit PD	0 mapping	1	
	I	Prozessdatengröße: Eingang 96 Ausgang 88	[Bit] / 304 [Bit] [Bit] / 256 [Bit]	Index 0x2002:01	Größe 8 [Bit]	Datentypl BYTE	PDO-Eintrags Sysmac Error	bezeichnur Status	ng Komm	entarl I
Auswahl	Ein-/Ausgang Ausgang	Name 25/th receive PDO mapping	Merker \land							
		Keine Option								
•	Ausgang	273th receive PDO mapping								
	 Eingang	Keine Option 1st transmit PDO mapping	 Bearbeitbar							
	 Eingang Eingang	Keine Option 257th transmit PDO mapping 258th transmit PDO mapping	 							
	 Eingang	Keine Option 273th transmit PDO mapping								
•	 Eingang	Keine Option 511th transmit PDO mapping								
	 Eingang	Keine Option 512th transmit PDO mapping	V							
						Nach c	ben Nac	th unten	Ausric	hten
			PDO-Eintrag	bearbeiten	PDO-E	Eintrag hir	ızufügen	PDO-Eint	trag lösch	nen
						OK	Abbre	echen	Überneh	nmen

Abbildung 5-2: Erweiterung des PDO-Mappings

Zuletzt muss die FSoE Adresse des Frequenzumrichters in Parameter *H483 FSoE Adresse* eingetragen werden. Diese muss mit der FSoE Adresse in der Sicherheitssteuerung übereinstimmen.

=	H481	3052.52	7SEG Monitor Item Selection	0 : Display drive status	 0	0 bis 1	В
	H482	3052.53	Reserved			0 bis 65535	В
=	H483	3052.54	FSoE Address	5	 0	0 bis 65535	В
=	H484	3052.55	Reserved	0	 0	0 bis 65535	В

Abbildung 5-3: Einstellung der FSoE-Adresse im Parameter H483

Im Falle einer NX-Sicherheitssteuerung können Sie die FSoE-Adresse des Frequenzumrichters in der Tabelle der *Sicherheits-E/A* einsehen.

Multiview-Explorer 🗸 🦞	ECA	EtherCAT						
L new Safety⊂DID ▼		Position	Aktiv	Gerätename	Produktinformationen	FSoE-Slave-Adresse	FSoE-Watchdog-Zeitgeber (WD1	Automat. WDT-Einst.
		Knoten 1		E004	3G3M1-AB002-ECT; 1.0	5	48	
V Konfiguration und Einrichtung		Knoten 2		E003	R88D-1SN01H-ECT; 1.2	4	47	
V To Kommunikation		Knoten 5/Baugrup		N2	NX-SID800; 1.0	1	47	
V 🖉 Sicherheit		Knoten 5/Baugrup		N3	NX-SOD400; 1.0	2	47	
Sicherheits-E/A	_	Knoten 9		E002	R88D-1SN01H-ECT; 1.2	3	47	
L 📲 Knoten 1 : 3G3M1-AB002-ECT (E004 : Instance4)								
L								
Knoten 5/Baugruppe 2 : NX-SID800 (N2 : Instance0)								
Knoten 5/Baugruppe 3 : NX-SOD400 (N3 : Instance1)								
L 👫 Knoten 9 : R88D-1SN01H-ECT (E002 : Instance2)								
▼ 🖾 Standard								
▼ #II Slave-E/A								
🗆 🔚 Exponierte Variablen								
👦 Task-Einstellungen								

Abbildung 5-4: Prüfen der FSoE-Slave-Adresse

5.6 Festfrequenzen

Nutzen Sie diese Funktion um festgelegte Drehzahlen als Frequenzsollwert zu aktivieren. Die Aktivierung der Drehzahlen erfolgt über die digitalen Eingänge.

Die Aktivierung kann sowohl binär als auch bitweise erfolgen. In binärer Aktivierung können bis zu 16 verschiedene Drehzahlen festgelegt werden. In bitweiser Aktivierung können bis zu 7 verschiedene Drehzahlen festgelegt werden. Die Auswahl zwischen binärer- und bitweiser Aktivierung erfolgt über den Parameter *E107*. Die Drehrichtung bei Festfrequenzen wird durch den *Startbefehl* festgelegt.

5.6.1 Binäre Aktivierung

Um die binäre Ansteuerung der Festfrequenzen zu aktivieren, muss Parameter *E107=0* eingestellt werden. Durch Einstellen der Werte *0: CF1* bis *3: CF4 in den Parametern E01 bis E05* bzw. *E98/E99* kann die Mehrfach Drehzahl 0 bis 15 über die entsprechenden digitalen Eingänge aktiviert werden. Die Frequenzwerte können in den Parametern *C05* bis *C19* festgelegt werden. Die Bedingungen für die entsprechenden Festfrequenzen können der folgenden Tabelle entnommen werden:

Festfrequenz	CF4	CF3	CF2	CF1
0 *1			ALIC	AUS
1 [C05]		ALIC	AUS	EIN
2 [C06]		AUS		AUS
3 [C07]	ALIC		EIN	EIN
4 [C08]	AUS		ALIC	AUS
5 [C09]		FIN	AUS	EIN
6 [C10]		EIN		AUS
7 [C11]			EIN	EIN
8 [C12]				AUS
9 [C13]			AUS	EIN
10 [C14]		AUS		AUS
11 [C15]			EIN	EIN
12 [C16]	EIN			AUS
13 [C17]			AUS	EIN
14 [C18]		EIIN		AUS
15 [C19]			EIN	EIN

*1 Vorgabe über die in F001 angegebene Quelle

5.6.2 Bitweise Aktivierung

Um die bitweise Ansteuerung der Festfrequenzen zu aktivieren, muss Parameter *E107=1* eingestellt werden. Durch Einstellen der Werte 173: *SF1* bis 179: *SF7 in den Parametern E01 bis E05* bzw. *E98/E99* kann die Festfrequenz 0 bis 7 über die entsprechenden digitalen Eingänge aktiviert werden. Die Frequenzwerte können in den Parametern *C05* bis *C11* festgelegt werden. Die Bedingungen für die entsprechenden Festfrequenzen können Sie der folgenden Tabelle entnehmen:

Festfrequenz	SF7	SF6	SF5	SF4	SF3	SF2	SF1
0 *1	AUS						
1 [C05]	AUS	AUS	AUS	AUS	AUS	AUS	EIN
2 [C06]	AUS	AUS	AUS	AUS	AUS	EIN	AUS
3 [C07]	AUS	AUS	AUS	AUS	EIN	AUS	AUS
4 [C08]	AUS	AUS	AUS	EIN	AUS	AUS	AUS
5 [C09]	AUS	AUS	EIN	AUS	AUS	AUS	AUS
6 [C10]	AUS	EIN	AUS	AUS	AUS	AUS	AUS
7 [C11]	EIN	AUS	AUS	AUS	AUS	AUS	AUS

*1 Vorgabe über die in F001 angegebene Quelle

5.7 Wichtige Digitale Ein- und Ausgänge

In den folgenden Tabellen sind die wichtigsten bzw. meist genutzten Funktionen der Digitalen Ein- und Ausgänge aufgelistet. Um die Übersichtlichkeit beizubehalten, sind in der Liste nur die nicht negierten Werte angegeben. Wird zum eingestellten Wert der Wert 1000 addiert, handelt es sich um die negierte Parametereinstellung.

Beispiel:

Wert 7:	FRS, Freies Auslaufen	(Schließer-Kontakt)
Wert 1007:	FRS, Freies Auslaufen	(Öffner-Kontakt)

Parameter Nr.	Wert	Beschreibung	Kontaktart	Hinweis
	7	FRS: Freies Auslaufen	Schließer	
	8	RS: Rücksetzen	Schließer	
	9	EXT: Externe Fehlerauslösung	Öffner	
	10	Tippbetrieb	Schließer	
	17	Erhöhen (Funktion Kapitel 7-9-10)	Schließer	
	18	Verringern (Funktion Kapitel 7-9-10)	Schließer	
	30	STOP: Erzwungener Stopp	Öffner	
	47	LOCK: Servo Lock in Positionierung	Schließer	
	65	BOK: Bremssignal Rückführungseingang	Schließer	
	94	Tippbetrieb Vorwärtsstart	Schließer	
E01 bis E05	95	Tippbetrieb Rückwärtsstart	Schließer	
E98, E99	98	Vorwärtsstart/-stopp	Schließer	Nur
				Parameter
				E98/E99
	99	Rückwärtsstart/-stopp	Schließer	Nur
				Parameter
				E98/E99
	135	ABS/INC: Relativer-/Absoluter-Positionsbefehl	Schließer	
	141	Positionsbefehl zurücksetzen	Schließer	
	142	Positionsbefehl setzen	Schließer	
	144	Zielposition aktualisieren	Schließer	
	184	Drehmomentbegrenzung aktivieren	Schließer	

5.7.1 Digitale Eingänge

5.7.2 Digitale Ausgänge

Parameter Nr.	Wert	Beschreibung
	0	Start Signal
	6	Automatischer Wiederanlauf nach kurzzeitigem Spannungsausfall
	7	Elektrothermische Warnung
	10	Betriebsbereit
	25	Kühllüfter in Betrieb
	35	Umrichter Ausgang Aktiv
	36	Überlastschutzsteuerung
	37	Überlastwarnung
	38	Überlastwarnung 2
	41	Erkennung einer niedrigen Last
	52	Vorwärts Startsignal
E20, E21, E27	53	Rückwärts Startsignal
	56	Motorüberlasst, erkannt durch Thermistor
	57	Bremslösesignal
	70	0 Hz Signal
	82	Position erreicht
	87	Sollfrequenz erreicht
	98	Geringfügiger Alarm
	99	Alarm
	102	EDM: Rückführung STO
	132	Drehmoment Limit
	152	Erzwungener Stopp aktiv
	182	Bremsenfehler

5.8 Betriebsart U/f

Um die Betriebsart U/f auszuwählen muss der Parameter *F42* auf *0: IM V/f control* oder *3: V/f control with speed sensor* gestellt werden.

Es wird zwischen zwei U/f-Kennlinien unterschieden:

Parameter Nr.	Wert	Beschreibung	Werkseinstellung (Bereich)
F27	0	Quadratisches Drehmoment	1
F3/	1	Konstantes Drehmoment	(0-1)

5.8.1 Feste U/f-Kennlinie mit konstantem Drehmoment und quadratischem Drehmoment

Die Unterscheidung dieser fest vorgegebenen U/f-Kennlinien wird applikationsabhängig getroffen. Die quadratische Kennlinie ist für Applikationen mit quadratischem Drehmomentbedarf zu empfehlen (Lüfter, Pumpen). Diese Einstellung wirkt sich hauptsächlich auf den Stromverbrauch und somit einen verbesserten Wirkungsgrad im Teillastbereich aus.

Parameter Nr.	Beschreibung	Werkseinstellung (Bereich)
F03	Maximale Ausgangsfrequenz	60 Hz (5 – 590 Hz)
F04	Nennfrequenz des Motors	50 Hz (5 – 590 Hz)
F05	Nennspannung des Motors bei Nennfrequenz	Modellabhängig 200 / 400 V (80 – 240 V / 160 – 500 V)
F06	Nennspannung des Motors bei maximaler Ausgangsfrequenz	Modellabhängig 200 / 400 V (80 – 240 V / 160 – 500 V)
E166	nicht-Lineare U/f-Frequenz 1	0 Hz (0 – 590 Hz)
E167	nicht-Lineare U/f-Spannung 1	0 Hz (Modellabhängig 0 – 240 V / 0 – 500 V)

Konstantes Drehmoment

Quadratisches Drehmoment

Abbildung 5-6: Kennlinie quadratisches Drehmoment

5.9 Motorschutz

Die Motorschutzfunktionen des Frequenzumrichters sollen verhindern, dass der Motor überlastet oder beschädigt wird

Parameter Nr.	Name	Wert	Werkseinstellung (Wertebereich)
F10	Elektrothermische 1: Für Motoren mit Motorschutzcharakteristik Kühlung durch Wellenlüfter 2: Für Motoren ohne Kühlung und externer Kühlung		1 (1-2)
F11	Elektrothermischer Motorschutz-Level	0.00: deaktiviert <0.00: 1 % bis 135 % des Nennstroms des Frequenzumrichters	Modellabhängig (Modellabhängig)
F12	Elektrothermische Motorschutz- Zeitkonstante	in Minuten	5 (0.5-75.0)
M59	Elektrothermischer Motorschutz-Monitor	0 bis 100 %	0 % (0 – 100 %)
H89	Elektrothermische Motorschutz-Überlast Datenspeicherung	0: deaktiviert 1: aktiviert *1	0 (0-1)

5.9.1 Elektrothermische Motorschutzfunktion

*1 Wenn *H89* = 1: aktiviert werden die für die Berechnung notwendigen Daten der Motorschutzfunktion im EEPROM gespeichert. Diese Daten werden nach einem Spannungsausfall des Umrichters wieder verwendet.

5.9.2 Motor PTC (Thermistor)

Schließen Sie den Motor-PTC zwischen den Anschlüssen *PTC* und *AIC* an. Über die folgenden Parameter kann die PTC-Funktion des Frequenzumrichters konfiguriert werden.

Parameter Nr.	Funktion	Wert	Werkseinstellung (Wertebereich)
H26	Thermistor Funktionsauswahl	0: deaktiviert	
	(MOH)	1: Umrichter Stoppt, Fehler	
		OH4	0
		2: Umrichter bleibt in	(0-3)
		Betrieb, Ausgang MOH wird	
		geschaltet	
H27	Thermistor Fehlererkennungs-Level	0.00 bis 5.00 V	1.60 V
	(MOH)		(0.00 – 5.00 V)
E20	Ausgangsterminal DO1	56: MOH (Motorüberhitzung	0
	Funktionsauswahl	durch Thermistor erkannt)	(0 – 1241)
E21	Ausgangsterminal DO2		7
	Funktionsauswahl		(0 – 1241)
E27	Ausgangsterminal ROA/ROB		99
	Funktionsauswahl		(0 – 1241)

5.9.3 Thermokontakt

Ein im Motor verbauter Thermokontakt kann an einem digitalen Eingang (DI1 bis DI7) angeschlossen werden. Hierfür muss dem digitalen Eingang im Parameter *E001* bis *E05* bzw. *E98, E99* die Funktion *9: Externe Fehlerauslösung* zugewiesen werden.

5.10 Bremswiderstand

Um die regenerative Bremsfunktion zu nutzen, muss die Antiregenerative Kontrollfunktion (H69) deaktiviert werden. Verfügt der Bremswiderstand über einen Thermokontakt, kann dieser, wie in *Kapitel 5.9.3 Thermokontakt* beschrieben, angeschlossen werden.

Parameter Nr.	Funktion	Beschreibung	Wert	Werkseinstellung (Wertebereich)
Н69	Antiregenerative Kontrollfunktion	Für Nutzung eines Bremswiderstandes deaktivieren	0: deaktiviert 1: aktiviert	0 (0-1)
F50	Bremsleistung in kWs	Motorleistung x Bremszeit	1 bis 9000 32767: Abbruch	32767 (1 – 9000, 32767)
F51	Bremsleistung in kW%	Motorleistung x Einschaltdauer in %	0.001 – 999	0.001 (0.001 – 999)
F52	Bremswiderstandswert	In Ohm	0.01 – 999	0.01 (0.01 – 999)

6 EtherCAT PDO-Mapping

Das PDO-Mapping der 3G3M1-Serie ist auf 3 Eingangs- und 3 Ausgangs PDOs limitiert. Folgende PDOs sind standardmäßig aktiviert:

- 258th receive PDO mapping
- 258th transmit PDO mapping
- 512th transmit PDO mapping

📓 PDO	-Zuordnungse	instellungen bearbeiten							-		\times
PDO-Zuo	rdnung				PDO-Einträge	e enthal	ten in 258	th transmit PDO	mapping		
		Prozessdatengröße: Eingang 40	[Bit] / 304 [Bi	t]	Index	Größe	Datentyp	PDO-Eintragsbe	zeichnund	g Komm	entarl I
Accessed	IF:- /A	Ausgang 32	2 [Bit] / 256 [B	it]	0x5100:00	16 [Bir	WORD	Status			_
Auswani	Ein-/Ausgang		Merker	-1	0x5110:00	TO [BI	UNI	Output Frequer	1су №о		_
		Keine Option	 D								
	Ausgang	Ist receive PDO mapping	Bearbeitbar	-							
		Keine Option									
	Ausgang	257th receive PDO mapping									
•	Ausgang	258th receive PDO mapping									
0		Keine Option									
Ŏ	Ausgang	273th receive PDO mapping									
0		Keine Option									
Ŏ	Eingang	1st transmit PDO mapping	Bearbeitbar								
		Keine Option									
	Eingang	257th transmit PDO mapping									
۲	Eingang	258th transmit PDO mapping									
٢		Keine Option									
	Eingang	273th transmit PDO mapping									
0		Keine Option									
	Eingang	511th transmit PDO mapping									
		Keine Option									
0	Eingang	512th transmit PDO mapping									

Abbildung 6.1: Standard PDO-Mapping

Wird nun das PDO-Mapping für STO über FSoE (*273th transmit/receive PDO mapping*) aktiviert, ist bereits das PDO-Mapping Limit für die ausgehende Kommunikation (transmit) des Frequenzumrichters erreicht. Da die Standard PDOs sowie das PDO-Mapping der Sicherheitsfunktion nicht erweitert oder angepasst werden kann, muss wie folgt vorgegangen werden, wenn weitere PDO-Einträge hinzugefügt werden sollen:

- 1. Notieren der benötigten PDO-Einträge des 258th transmit PDO mapping
 - a. 5100:00 Status
 - b. 5110:00 Output Frequency
- 2. Deaktivierung des 258th transmit PDO mapping
- 3. Aktivieren des 1st transmit PDO mapping
- 4. Hinzufügen der PDO-Einträge, welche unter Punkt 1 notiert wurden, zum 1st transmit PDO mapping
- 5. Hinzufügen der zusätzlich benötigten PDO-Einträge zum 1st transmit PDO mapping
 - z. B.:
 - a. 3010:06 W005 Output Current Monitor
 - b. 3010:29 W040 Input Terminal Monitor
 - c.

36

7 Positionierfunktion

Bei der 3G3M1-Serie kann das PG-Rückführungssignal zur Positionssteuerung verwendet werden. Hierzu muss ein, den technischen Anforderungen entsprechender, Encoder mit Komplementärausgang an den Anschlüssen *PIA/PIB/PIZ/DIC* angeschlossen werden. Für die Verwendung mit dem 3G3M1 empfiehlt OMRON den Encoder E6C3-CWZ5GH.

7.1 Grundlegender Ablauf

Die Positioniersteuerung wird aktiviert, indem der digitale Eingang "SPD" während eines Stopps ausgeschaltet wird. Danach wird die Positionierung mittels RUN-Befehl gestartet und die Positionierung auf die Zielposition durchgeführt. Wenn die Position erreicht wurde, wird die Funktion "Servo lock" aktiviert und die Position gehalten.

Eine neue Zielposition wird durch Setzen des Eingangs "POS-SET" übernommen und angefahren. Bei Erreichen der Zielposition und aktiviertem "Servo lock" wird der Ausgang "POK" eingeschaltet.

Abbildung 7.1 : Ablaufdiagramm Positionierfunktion

7.2 Grundlegende Parametrierung zur Nutzung der Positionierfunktion

Folgende Parameter müssen eingestellt werden um die Positionierfunktion mit einem Encoder (europäischer Standard) zu nutzen:

Parameter Nr.	Funktion	Wert
D14	Vorgabe der Drehrichtung des Encoders	3: (A-Phase führend)
D1E	Encodor Auflösung	Encoder abhängig
	Encodel Autosung	Standard: 1024 Impulse
E01 bis E05, E98 oder E99 (einem	SPD: Wechsel von Geschwindigkeits- zu	127
dieser Eingänge)	Positioniermodus	137
E01 bis E05, E98 oder E99 (einem	POS-SET: Aktualisierung der Zielposition	144
dieser Eingänge)		144

7.3 Vorgabe Positionssollwert

Die Vorgabe der Positionssollwerte erfolgt in den Parametern *D244* bis *D259*. Die Auswahl der einzelnen Positionsvorgaben erfolgt über die Zuweisung von *CP1* bis *CP3* (Wert 145 - 147, zu den Parametern *E01* bis *E05, E98, E99*) zu den digitalen Eingängen.

СРЗ	CP2	CP1	Parameter [MSB, LSB]	Positionsdaten
AUS	AUS	AUS	D244, D245	1
AUS	AUS	EIN	D246, D247	2
AUS	EIN	AUS	D248, D249	3
AUS	EIN	EIN	D250, D251	4
EIN	AUS	AUS	D252, D253	5
EIN	AUS	EIN	D254, D255	6
EIN	EIN	AUS	D256, D257	7
EIN	EIN	EIN	D258, D259	8

Nach der Änderung der vorgegebenen Positionsdaten muss über POS-SET: Aktualisierung der Zielposition (144) der neue Vorgabewert übernommen werden.

Bei Geräten mit EtherCAT Schnittstelle kann der Positionssollwert zusätzlich über *S20/S21 Positionsdaten via Kommunikation* vorgegeben werden.

Parameter	Funktion	Wert	Werkseinstellung
D14	Impulseingangsformateinstellung	0: Impulsfolgerichtung/ Impulsfolgeeingang 1: Vorwärts-/Rückwärts- Drehrichtungsimpuls 2: quadratisches A/B Signal (A-Phase führend 3: quadratisches A/B Signal (B-Phase führend	2 (0-3)
D15	Encoder Auflösung	In Pulsen	1024 (20 – 60000)
D16	Pulsskalierungsfaktor Nenner		1 (1 – 32767)
D17	Pulsskalierungsfaktor Zähler		1 (1 – 32767)
D18	Impulseingang Filterzeitkonstante	In Sekunden	0.005 (0.000 – 5.000)
D237	Positionierungsdatentyp	0: Absolut (ABS) 1: Inkremental (INC)	0 (0-1)

7.4 Parameter zur Konfiguration der Encoder Eingänge

7.5 Wesentliche digitale Eingangsfunktionen für die Positionierfunktion

Parameter Nr.	Funktion	Wert
E01 bis E05, E98 und E99	INC/ABS: Wechsel des Positionierungstyps Inkremental/Absolut	135
	SPD: Wechsel von Geschwindigkeits- zu Positioniermodus	137
	FOT: Vorwärtsrotation sperren	139
	ROT: Rückwärtsrotation sperren	140
	PCLTR: aktuelle Position auf null setzen	141
	PSET: aktuelle Position in MSB (d240) und LSB (d241) speichern	142
	POS-SET: Aktualisierung der Zielposition	144
	CP1: Zielpositionsauswahl 1	145
	CP2: Zielpositionsauswahl 2	146
	CP3: Zielpositionsauswahl 3	147

7.6 Wesentliche digitale Ausgangsfunktionen für die Positionierfunktion

Parameter Nr.	Funktion	Wert
	POK: Positionierung abgeschlossen	82
E20, E21, E27	OT-OUT: Soft- oder Hardwarelimit überschritten	151
	STOP-OUT: Erzwungener STOPP aktiv	152

8 Fehlerumgebung

8.1 Definition

Wenn der Antrieb oder der Motor nicht ordnungsgemäß funktioniert, überprüfen Sie ob auf dem Bedienteil ein Fehlercode oder eine Fehlermeldung angezeigt wird.

Wenn Probleme auftreten, die in dieser Kurzanleitung und in der englischsprachigen Bedienungsanleitung nicht aufgeführt sind, wenden Sie sich bitte an den technischen Support. Bitte halten Sie folgende Informationen bereit:

- Typenbezeichnung
- Firmware Version
- Bestelldatum
- Beschreibung des Problems (z.B. Fehlerbedingungen)

Wenden Sie sich an den Hersteller, wenn der Antrieb beschädigt ist. Die Kontaktinformationen finden Sie auf der letzten Seite dieser Kurzanleitung.

Im Fehlerfall wird ein Fehlercode im Display angezeigt und die *Err LED* leuchtet dauerhaft. Die Ausgangsstufe wird abgeschaltet und der Motor stoppt. Bei einigen Fehlern kann der Nutzer eine Stopp-Methode festlegen.

Nutzen Sie die Alarm Liste 1 bis 6 (Program Mode 6. AL) um den aktuellen bzw. ältere Fehler zu überprüfen. In Alarm Liste 1 wird der neueste Alarm angezeigt.

Abbildung 8-1: Fehlercode in Alarm Listen einsehen

8.2 Fehlerliste

Die Fehlercodes sind in alphabetischer Reihenfolge aufgeführt. Suchen Sie den auf dem Bedienteil angezeigten Fehlercode und identifizieren Sie die Ursache. Detailliertere Informationen und mögliche Lösungen finden Sie in der englischsprachigen Bedienungsanleitung.

Fehlercode (Hex.)	Subcode (Hex.)	Name
CoF (-)	- (-)	Signalstörung Stromeingang Anschluss AI2(AII)
dbA (3B)	- (0000)	Bremstransistorfehler
dbH (16)	- (0000)	Übertemperatur Bremswiderstand
ECF (39)	- (0000)	Fehler Sicherheitskreis (SF1/SF2)
Er1 (1F)	- (0000)	Speicher-Fehler
Er2 (-)	- (-)	Bedienterminal Kommunikationsfehler
Er3 (21)	- (0000)	CPU-Fehler
Er5 (23)	- (2000 / 2015)	EtherCAT Kommunikationsfehler
	1 (-)	Forced Stop-Key oder -Input während START
Er6 (24)	2-6	Fehler Start-Check Funktion
	8 (-)	Fehler Bremsüberprüfungssignal
	30 (-)	Fehler USP-Signal
Er7 (25)	- (0000)	Tuning Fehler (Kapitel 4.3.3)
ErP (-)	- (-)	Kommunikationsfehler RS485-Schnittstelle
Erd (2A)	- (-)	Polpositionserkennungsfehler beim Anfahren / Motorblockade erkannt
ErC (32)	- (-)	Polpositionserkennungsfehler
ErE (2F)	- (0000)	Geschwindigkeitsabweichung
ErF (33)	- (0000)	Datenspeicherfehler bei Unterspannung
ErH (36)	- (0000)	Hardwarefehler
Ero (38)	- (0000)	Positionsregelfehler
Err (FE)	- (0000)	Testfehler (H45=1)
ErU (44)	- (-)	Unterbrechung der Verbindung zur Software während Test-Betrieb
Lin (0B)	- (0000)	Phasenausfall
LoK (FD)	- (0000)	Passworteingabefehler

Fehlercode (Hex.)	Subcode (Hex.)	Name
LU (0A)	(0000)	Unterspannung
OC1 (01)	(0000)	Überstrom bei Beschleunigung
OC2 (02)	- (0000)	Überstrom bei Verzögerung
OC3 (03)	- (0000)	Überstrom bei konstanter Fahrt
OH1 (11)	- (0000)	Übertemperatur Kühlkörper
OH2 (12)	- (0000)	Externer Fehler
OH3 (13)	- (0000)	Interne Übertemperatur
OH4 (14)	- (0000)	Motorschutz (PTC-Thermistor)
ОН6 (46)	- (0000)	Überhitzung Einschaltstromschutzwiderstand
OL1 (17)	- (0000)	Motorüberlast 1
OL2 (18)	- (0000)	Motorüberlast 2
OLU (19)	- (0000)	Frequenzumrichter Überlast
OPL (E2)	- (0000)	Ausgangsphasenverlusterkennung
OS (1B)	- (0000)	Übergeschwindigkeitsschutz
0U1	- (0000)	Überspannung bei Beschleunigung
0U2	- (0000)	Überspannung bei Verzögerung
OU3	- (0000)	Überspannung bei konstanter Fahrt
PbF (10)	- (0000)	Ladekreisstörung (Zwischenkreisaufladung)
PG (1C)	- (0000)	Encoderunterbrechung
D0 (34)	- (0000)	Übermäßige Positionsabweichung

8.3 Verfahren zum Quittieren des Fehlers

Führen Sie die nachfolgend beschriebenen Schritte durch, wenn ein Fehler aufgetreten ist und der Antrieb stoppt. Im Anschluss können Sie den Antrieb wieder einschalten.

Wenn ein Fehler auftritt und der Antrieb infolgedessen stoppt, beseitigen Sie zunächst die Fehlerursache und führen dann einen der nachfolgend beschriebenen Schritte aus, um den Fehler zu quittieren.

Methode	Beschreibung		
Methode 1	Drücken Sie die Taste Reser auf dem Bedienteil, während die Fehlermeldung oder die		
Methode 2	Schalten Sie den Digitaleingang ein, welchem Sie in Parameter E01 bis E05, E98 oder		
	E99 den Wert 8:RS (Reset) zugewiesen haben.		
	HINWEIS:		
	Werkseitig ist der Digitaleingang 5 für das zurücksetzen eines Fehlers definiert. <i>E05= 8:</i>		
	RS (Reset)		
Methode 3	1. Trennen Sie den Antrieb von der Spannungsversorgung.		
	2. Sobald die Anzeige auf dem Bedienteil vollständig erloschen ist, können Sie den		
	Antrieb wieder einschalten.		

Hinweis:

Bitte beachten Sie das Sie den Antrieb nicht zurücksetzen können, wenn ein Startbefehl über eine Optionskarte oder einen Digitaleingang vorliegt.

OMRON Electronics GmbH, Elisabeth-Selbert-Str. 17, D-40764 Langenfeld

Technical Support Motion & Drives Tel.: +49 (0) 2173 68 00 594, <u>https://omron.isohd.net/</u>

HINWEIS

Die technischen Daten und enthaltenen Informationen können ohne vorherige Ankündigung geändert werden.